P.T.O.

II Semester M.Sc. Examination, June 2015 (CBCS) CHEMISTRY C-203 : Physical Chemistry – II

Time : 3 Hours

Instruction : Answer question no. 1 and any five of the remaining questions.

- 1. Answer any ten of the following :
 - a) List the types of ensembles and differentiate between them.
 - b) How does an absolute invariant point appear?
 - c) State the basic principles of compressibility method of determining fugacity.
 - d) Show that entropy is always produced in an irreversible reaction.
 - e) With suitable distinguish between coupled and non coupled reactions.
 - f) Evaluate the mean activity coefficient of the 0.001/molal aqueous solution of BaCl₂.
 - g) How do you account for the presence conductance minima?
 - h) Give the physical significance of electrocapillary maxima.
 - i) Comment on the term surface excess.
 - j) Explain the necessity of expelling oxygen from polarographic cell before starting the reaction.
 - k) What is electrocatalysis and state how does it different from classical catalysis ?
 - I) Give the essence of the double layer at semiconductor-solution interface.
- 2. a) Explain the term partial molar volume and its experimental determination.
 - b) Deduce an expression for the translational partition function. Calculate the translational partition function for 1 mole of oxygen at 1 atm, pressure and 25°C, assuming the gas to be behave ideally. (4+6)
- 3. a) Explain the EMF method of determination of activity coefficient.
 - b) Compare Bose-Einstein and Fermi-Dirac statistics with Maxwell-Boltzmann statistics. Give an example for each. (5+5)

(2×10=20)

Max. Marks: 70

PG – 359

4.	a)	What are Onsager's reciprocal relations and show that it is applicable in th case of study electrokinetic phenomena ?	е
	b)	Discuss the transformation of the generalised fluxes and forces with a special reference to chemical reaction.	al (5+5)
5.	a)	Deduce an expression for ionic atmosphere.	
	b)	Discuss the thermodynamics of electrified interface.	(5+5)
6.	a)	Write Debye-Huckel-Onsager equation of conductivity and explain its relation to ion-solvent interaction.	
	b)	Explain the method of determination of interfacial tension of an electrifie interface.	d
	c)	Comment on the Bjerrum theory of ion association. (4	+3+3)
7.	a)	Discuss the Helmholtz theory of electrified interface.	
	b)	What is an overpotential ? Differentiate between different types of overpotentials.	(5+5)
8.	a)	Obtain an expression for the relation between partition function and equilibriur constant.	n
	b)	Discuss the quantitative estimation of metal ions polarographically.	(5+5)

PG – 359